浔之漫智控技术(上海)有限公司总部
主营西门子模块 , PLC模块 , 变频器模块 , 触摸屏模块
西门子CPU模块224XPCN AC/DC/RLY

西门子CPU模块224XPCN AC/DC/RLY西门子CPU模块224XPCN AC/DC/RLY

电路,实际上就是各种电路部件和电路器件相互连接而成的电流通路装置。就我们目前所学而得知,电路可以分为交流电路和直流电路,直流电路比交流电路简单很多。

SIEMENS触摸屏6AV6648-0CE11-3AX0
SIEMENS模块6ES7142-3BH00-0XA0
SIEMENS模块6ES7288-3AE08-0AA0
SIEMENS模块6ES7288-2DT16-0AA0
SIEMENS模块6ES7288-3AR04-0AA0
SIEMENS交换机6GK5005-0BA00-1AB2
SIEMENS触摸屏6AV2123-2MB03-0AX0
SIEMENS电缆6XV1840-2AH10
SIEMENS底座6ES7193-6BP00-0BA0
SIEMENS底座6ES7193-6BP00-0DA0
SIEMENS模块6ES7141-3BH00-0XA0
SIEMENS模块6ES7212-1AE40-0XB0
合信模块CTS7114-1BD20-0620
SIEMENSDP电缆6XV1830-0EH10
SIEMENS内存卡6ES7954-8LE03-0AA0
SIEMENS模块6ES7521-1BH10-0AA0
SIEMENS模块6ES7135-6HD00-0BA1
SIEMENS模块6ES7195-7HD10-0XA0
SIEMENS模块6ES7288-3AM06-0AA0
SIEMENS模块6ES7241-1CH32-0XB0
SIEMENS触摸屏6AV2124-0MC01-0AX0

   在交流电路和直流电路中,电阻元件(本文的电阻元件均指线性电阻元件)、电感元件(本文的电感元件均指线性电感元件)与电容元件(本文的电容元件均指线性电容元件)所表现出来的特性各有不同。

微信截图_20230218165818.png

   在直流电路中,电阻元件的伏安特性曲线是过原点的一条直线;而电感元件在直流电路中相当于通电导线或电阻元件(线圈电阻较大时);

   电容元件在直流电路中其两端电压恒定,相当于开路,电流无法流通,即电容元件有隔断直流的作用。电感元件和电容元件在交流电路中又有怎样的特性呢?

  这正是我们这次要学习的内容:单一参数正弦交流电路,这里的单一参数指的是电阻元件、电感元件和电容元件的相关参数。

  关于电阻电阻元件、电感元件和电容元件,我们在之前就已经学习过,在这里,我再次带大家简单回顾一下这三种元件。

  1、电阻元件:

  在电压和电流取关联参考方向时,在任何时刻电阻元件两端的电压和电流服从欧姆定律u =iR,如图32-1所示,即电阻元件上的电压u与通过该元件的电流i成线性关系。


  其中R为电阻元件参数,称为元件的电阻,当电压的单位为伏特(V)、电流的单位为安培(A)时,此时电阻的单位为欧姆(Ω)。


  

图32-1


另外,金属导体的电阻与导体的尺寸及导体材料的导电性能(电阻率)有关,其表达式如图32-1的(2)所示,其中ρ为导体的电阻率,l为导体的长度,S为导体的横截面积。电阻元件从t0到t的时间内吸收的电能如图32-1的(3)所示,在直流电路中可表示为W =UIt =I2Rt,电阻元件一般把吸收的电能转换成热能或其他能量。


  电阻元件还是比较简单的,当流过一个电阻元件的电流无论为何值时,它的端电压恒为零,此时就把它称为“短路”,当电阻元件的端电压不论为何值时,流过它的电流恒为零值,就把它称为“开路”。


  2、电感元件:

  如图32-2所示,它是实际线圈是理想化模型,线圈,也就是用导线一圈一圈绕制而成。电感元描述了线圈通有电流时产生磁场、储存能量的性质。


  图32-2所示的线圈,流过该线圈的电流i产生的磁通φL与N匝线圈交链,则磁通链ΨL=NφL。


  电感元件的特性指的是磁通链(磁链)Ψ与电流i的代数关系,其元件特性如图32-2的(2)所示,其中L为电感元件的参数,称为电感,它是一个正实常数,单位为亨利(H)。


  线圈的电感与线圈的尺寸、匝数以及附近的介质的导磁性能(磁导率)等有关,其表达式如的(3)所示,其中μ为介质的磁导率,S为线圈的横截面积,N为线圈的匝数,l为线圈的长度。


  

图32-2


当磁链随时间变化时,线圈就会产生感应电动势,即线圈两端会产生感应电压(与感应电动势大小相等,方向相反),如图32-2的(4)所示,感应电动势的参考方向与磁通的方向满足右手螺旋关系。图32-2的(4)式可以表明,当电感上电流发生剧变(即电流变化率非常大)时,电压很大;而当电流不变时,此时的电压为零,这就是上文所说电感元件在直流电路中相当于通电导线,理想情况下元件两端不会产生压降。


  电感元件从零初始状态开始到t的时间内电感元件吸收能量如图32-2的(5)所示,即电感元件是一种储能元件,它把吸收的能量以磁场能量的形式存储在磁场中。当电流增大时,磁场能增大,电感元件从电源吸收电能;当电流减小时,磁场能减小,电感元件向电源释放能量。


  3、电容元件 :

  是实际电容器的电路模型,描述电容器两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并存储电场能量的性质。


  电容元件的元件特性是电路物理量电荷q与电压u的代数关系,如图32-3的(1)所示,其中C是电容元件的参数,称为电容,它是一个正实常数,单位为法拉(F)。


  电容器的电容与极板的尺寸及其极板间介质的介电常数等有关,表达式如图32-3的(2)所示,其中S为极板面积,d为极板间距离,ε为介电常数。


  如果电容元件的电流i与电压u取关联参考方向,当电压u变化时,在电路中电容元件的电压电流关系(VCR)如图32-3的(3)所示,这表明电容元件的电流与电压的变化率成正比,以电荷q(单位为库伦)和电压u(单位为伏特)为坐标画出电容元件的库伏特性曲线是一条过原点的直线。

  

 图32-3


  另外,图32-3的(3)中表明的的电容元件的电流与电压的变化率成正比关系,可以发现,当电容上电压发生剧变(即电压变化率非常大)时,电流很大,电流大到一定程度时可能会烧坏电容器;而当电压不变时,此时的电流为零,这就是上文所说的电容器有隔直作用。


  电容元件从零初始状态开始到t的时间内电容元件吸收能量如图32-3的(4)所示,即电容元件也是一种储能元件,它把吸收的能量以电场能量的形式存储在电场中。当电压增大时,电场能增大,电容元件从电源吸收电能;当电压减小时,电场能减小,电容元件向电源释放能量。


  在回顾完一遍电阻元件、电感元件和电容元件的相关参数与特性后,我们便开始学习单一参数正弦交流电路的相关知识。其中包括电阻元件的交流电路、电感元件的交流电路与电容元件的交流电路。


  (1)电阻元件的交流电路

  在前文就有提到过,在直流电路中,电阻元件的伏安特性曲线都是过原点的一条直线,但是在交流电路中,电压和电流都是以正弦规律变化的,此时电阻元件两端的电压电流关系又是怎样的呢?


  如下图32-4所示,在图(1)电阻元件的正弦交流电路中,根据欧姆定律有u =iR,设电压的瞬时值表达式u =Umsinωt,初相角为零,则电流i的瞬时值为i =u/R,代入电压u的表达式得i =Imsinωt。比较电压和电流的瞬时值表达式,可以发现,电压和电流的频率相同,它们的大小关系为I=U/R,此时电压与电流的相位相同,即两者相位差为零。



  

图32-4


  也就是说,在电阻元件的正弦交流电路中,电压和电流的差别只在于数值大小不同,它们的波形图、相量式与相量图如上图32-4所示。由于电压与电流的相位相同,它们的相量图方向相同,两者重叠。


  交流电路中,瞬时功率定义为瞬时电压与瞬时电流的乘积,用小写字母p表示;而平均功率则是指瞬时功率在一个周期内的平均值,用大写字母P表示。显然,在电阻元件的正弦交流电路中,它的瞬时功率和平均功率显然是不一样的。


  

图32-5


  如上图32-5所示,电阻元件的正弦交流电路中,设u =Umsinωt,i =Imsinωt,此时瞬时功率p的表达式如图32-5中的式(1)所示,并画出其波形图,中间的推导过程大家看不懂也没关系,只需知道结论即可。从表达式和波形图可以看出,瞬时功率p的值是恒大于等于零的,这表明电阻元件是耗能元件,且随时间变化。

0AD02.png

  另外,由平均功率的定义,结合瞬时功率的表达式,如图32-5中的式(2)所示,可得平均功率P =UI,其中的U和I是分别电压和电流的有效值。这其实有点类似电阻元件的直流电路中的功率,均是电压乘以电流。


发布时间:2023-11-04
展开全文